

### Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ΡI

#### Re-Examinations, June 2019.

| Program: B Tech. (Mechanical Engineering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Duration: Thr                       | ee Ho | ur  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|-----|--|--|--|--|--|
| Course Code: PCC BTM 506 Maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |       | 00  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |       | V   |  |  |  |  |  |
| 1. A. Differentiate between initial value and boundary value problem. Explain the logic of shooting method and discuss its execution methodology.<br>B. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the line x=0 and x=1, and a curve through the points with the following coordinates:<br>$ \frac{x  0}{y  1.000  0.9896  0.9589  0.9089  0.8415} $ Using 1/3 Simpson formula, estimate the volume of the solid formed,<br>$ V = \pi \int_{0}^{1} y^{2} dx$ , giving the answer to three decimal places. |                                     |       |     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Points                              | CO    | BL  |  |  |  |  |  |
| <ul> <li>logic of shooting method and discuss its execution methodology.</li> <li>B. A solid of revolution is formed by rotating about the x-axis, the are between the x-axis, the line x=0 and x=1, and a curve through the point</li> </ul>                                                                                                                                                                                                                                                                                                             | a                                   | 1     | 1,2 |  |  |  |  |  |
| x00.250.500.751.00y1.0000.98960.95890.90890.8415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                  | 2     | 3   |  |  |  |  |  |
| <ul> <li>A. Answer any four (04) of the following:</li> <li>(i) Distinguish between lumped and distributed approach of mathematic modeling. Give one example for each approach.</li> <li>(ii) Define terms: (a) accuracy, (b) precision, and (c) truncation error.</li> <li>(iii) Discuss about the convergence rate of Jacobi method or Gauss-Seid</li> </ul>                                                                                                                                                                                            | cal                                 | 1,2   | 2   |  |  |  |  |  |
| <ul> <li>(iv) Write the method of Regula-Falsi to obtain a root of f(x) = 0. Disculimitations.</li> <li>(v) Using Taylor series suggest a second order accurate representation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |                                     |       |     |  |  |  |  |  |
| <b>B.</b> Consider a composite fin of carbon steel of circular cross section. It with a thin dielectric layer for corrosion protection. The dielectric layer                                                                                                                                                                                                                                                                                                                                                                                              | serves as 10<br>on whose<br>Develop | 2,3   | 3,4 |  |  |  |  |  |
| <ol> <li>A. Name any four numerical methods to solve a non-linear algebraic eq<br/>Explain their approach to obtain solution. Also discuss their limitations</li> <li>B. Use the Gauss-Seidel method without relaxation to solve the followi</li> </ol>                                                                                                                                                                                                                                                                                                   |                                     | 1     | 1,2 |  |  |  |  |  |
| system to a tolerance of $\varepsilon$ = 5 5%. If necessary, rearrange the equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                   | 2     | 3   |  |  |  |  |  |

achieve convergence.

\_

$$3x_1 + x_2 + 12x_3 = 50$$
  

$$6x_1 - x_2 - x_3 = 3$$
  

$$6x_1 + 9x_2 + x_3 = 40$$

A. State the features of spline interpolation? Explain procedure for its execution. 10 4. B. An outcome of experimental investigation is depicted in following table in the form of input variable and output f(x).

|    | the to                        | rm or   | mput v    | ariable all             | a output I              | (A).           |            |         |               |                                       | 10 | 2,3 |   |
|----|-------------------------------|---------|-----------|-------------------------|-------------------------|----------------|------------|---------|---------------|---------------------------------------|----|-----|---|
|    |                               | 1       | x         | 1                       | 3                       |                | <u> </u>   | 7       | 10            |                                       | 10 |     |   |
|    |                               | 1       | f(x)      | 3                       | 31                      |                |            | 351     | 101           |                                       |    |     |   |
|    | (a) Co                        | onstrue | ct Newt   | on's forwa              | ard divide              | d differe      | ence table | and     | develo        | p                                     |    |     |   |
|    | interp                        | olatin  | g polyn   | omial.                  |                         |                |            |         |               |                                       |    |     |   |
|    | (a) Pr                        | edict r | naximu    | im order o              | of polynon              | nial thro      | ugh the t  | able o  | f divi        | ded                                   |    |     |   |
|    | differ                        | ence.   |           |                         |                         |                | • .•       | • • .   |               | · · · · · · · · · · · · · · · · · · · |    |     |   |
|    | (b) Co                        | ompar   | e the va  | dues obtai              | ined from               | two qua        | idratic po | lynon   | niai us       | sing any two                          |    |     |   |
|    |                               |         | ta set of | f three, for            | r f(4.5), f(            | 8) and t       | ne second  | i deriv | valive        | of f(x) at                            |    |     |   |
|    | x=3.2                         | •       |           |                         |                         |                |            |         |               |                                       |    |     |   |
| _  | 4 NT-                         |         | numaria   | ont method              | d to solve              | a hound        | arv value  | prob    | lem a         | nd explain                            | 10 | 2,3 | i |
| 5. | A. Na                         | dure f  | or calcu  | ilation                 |                         | a ooune        | ary varas  | , b. oo |               |                                       | 10 | , 0 |   |
|    | •                             |         |           |                         |                         | • • • • 11     |            |         | 200           | OC It cools in                        | 10 | 2,3 |   |
|    | <b>B.</b> A                   | coppe   | r sphere  | of diame                | ter 5 cm 1              | s initiall     | y at temp  |         | re 200        | °C. It cools in                       | 10 | 2,2 |   |
|    |                               |         |           |                         | on. The te              | emperan        | lre I of u | ie spr  | iere is       | governed by                           |    |     |   |
|    | the er                        | nergy ( | equation  |                         |                         |                |            | -       |               |                                       |    |     |   |
|    |                               |         |           | $\rho CV \frac{dI}{dt}$ | $=-[\varepsilon\sigma($ | $T^4 - T_a^4)$ | +h(T-T)    | [,)]A   |               |                                       |    |     |   |
|    | All te                        | rms c   | arries th | neir usual              | meaning.                |                |            |         |               |                                       |    |     |   |
|    | Evalı                         | ate th  | e tempe   | erature var             | riation wit             | h time ι       | ising the  | RK-II   | meth          | od and                                |    |     |   |
|    | deter                         | mine t  | he time   | needed for              | or the tem              | perature       | to drop t  | below   | 100~          | <i>U</i> .                            |    |     |   |
|    |                               | •       | L         |                         | مارسا                   |                |            |         |               |                                       | 10 | 1   |   |
| 6. | $\mathbf{A} \cdot \mathbf{D}$ | erive t | ne Simj   | pson's 1/3              | ad differe              | nce nol        | vnomial    | of sec  | cond o        | rder using                            | 10 | •   |   |
|    | B. CO                         | nstru   | LAA AL    |                         | ent on natu             | me of po       | sible no   | lvnon   | nial ha       | ised on                               |    | 2,3 |   |
|    |                               |         |           | so comme                | mi on nau               | ne or pe       | ssible po  | lynon   | ina or        |                                       | 10 | 2,5 |   |
|    | differ                        | ence    | able.     |                         |                         | 0.0            |            |         | 1 7           | 1.2                                   |    |     |   |
|    |                               | x       | 1         | 0.2                     | 0.4                     | 0.6            | 0.8        |         | $\frac{1}{1}$ | 2.0736                                |    |     |   |
|    |                               | f(x)    | 0         | 0.0016                  | 0.0256                  | 0.1290         | 5   0.409  | 0       | 1             | 2.0750                                |    |     |   |

| X       | 1 '     | 0.2        | 0.4         | 0.0       | 0.0        | 1         | 1.4         |  |
|---------|---------|------------|-------------|-----------|------------|-----------|-------------|--|
| f(x)    |         |            | 0.0256      | 0.12/0    |            | 1         | 2.0736      |  |
| Evolain | the con | cent of ci | rve fitting | . What is | the procee | iure of l | east square |  |

10 A. Explain the concept of curve fitting 7. ıg method. B. In a manufacturing process, a spherical piece of metal is subjected to radiative-convective heat transfer, resulting in the energy balance equation, 10

$$0.6 \times 5.67 \times 10^{-8} \left[ \left( 850 \right)^4 - T^4 \right] = 40 \times (T - 350)$$

Consider the surface emissivity as 0.6, temperature of the radiating source 850 K, Stefan-Boltzman constant  $5.67 \times 10^{-8} \text{ W}/(\text{m}^2\text{K}^4)$ , the ambient fluid temperature 350 K and the convective heat transfer coeffcient 40 W/( $m^2 \cdot K$ ). Find the temperature T by applying the SECANT method.

10

1,2 1

5 2,3 10

1,5 3

1

1

2,3 4,5



#### Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



June 2019 Re--Examinations

| Program: T.Y.B. Tech. (Mechanical Engineering) | Duration: 03 Hrs    |
|------------------------------------------------|---------------------|
| Course Code: PCC-BTM505                        | Maximum Points: 100 |
| Course Name: Hydraulic Machinery               | Semester: V         |

#### Notes:

1. Question number 1 is compulsory; solve any 4 questions from question 2 to 7.

- 2. If necessary assume suitable data with justification
- 3. Draw neat labeled sketches wherever required.

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Points | со  | BL | PI    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|----|-------|
| 1     | With neat sketches write short note on (i) Vane Pump (ii)<br>Axial flow Reaction Turbine (iii) Cavitations in Turbine and<br>methods to avoid it (iv) Net Positive Suction Head                                                                                                                                                                                                                                                                                                                                                                       | 20     | 1,2 | 3  | 1.1.3 |
| 2 (a) | A pump has the following characteristics when running at 1425 rpm<br>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                           | 10     | 3   | 4  | 2.8.2 |
| 2 (b) | Explain negative slip in reciprocating pump with the help of indicator diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05     | 1   | 1  | 1.6.1 |
| 2 (c) | With neat sketch explain salient features of Pelton wheel<br>buckets and working of impulse turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05     | 4   | 2  | 1.5.1 |
| 3 (a) | A centrifugal pump has a suction pipeline of 12.5 cm diameter<br>and 10 m length. The static suction lift is 2m. Friction factor<br>for pipe is 0.02. The pump delivers oil of specific gravity 0.8,<br>the vapour pressure for oil at ambient temperature being 0.015<br>kg/cm <sup>2</sup> absolute. The NPSHR characteristic of the pump is<br>given by the equation $15Q+65Q^2$ where NPSHR is in meters<br>of water column absolute and Q is in m <sup>3</sup> /s. If the ambient<br>pressure is 1 bar (abs) determine the maximum discharge the | 10     | 3   | 5  | 2.6.4 |



Bharatiya Vidya Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

#### June 2019 Re--Examinations

|      | pump can handle without cavitating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |   |   |       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
| 3(b) | A Kaplan turbine runner is to be designed to develop 7357.5<br>KW shaft power. The net head available is 5.50 m. Assume<br>that the speed ratio is 2.09 and flow ratio is 0.68, and the<br>overall efficiency is 60%. The diameter of the boss is $1/3^{rd}$ of<br>the diameter of the runner. Find the diameter of the runner, its<br>speed and its specific speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 | 3 | 3 | 2.7.2 |
| 4(a) | A single acting reciprocating pump is to raise a liquid of<br>density 1200 kg per cubic metre through a vertical height of<br>11.5 metres, from 2.5 metres below pump axis to 9 metres<br>above it. The plunger, which moves with S.H.M. has diameter<br>125 mm, and stroke 225 mm. The suction and delivery pipes<br>are 75 mm diameter and 3.5 metres and 13.5 metres long<br>respectively. There is a large air vessel placed on the delivery<br>pipe near the pump axis. But there is no air vessel on the<br>suction pipe. If separation takes place at 8.829 N/cm <sup>2</sup> below<br>atmospheric pressure, find: (1) maximum speed, with which<br>the pump can run without separation taking place, and (2)<br>power required to drive the pump, if f=0.08. Neglect slip for<br>pump. Consider maximum speed as operating condition.                                                      | 10 | 2 | 4 | 2.6.4 |
| 4(b) | Write short note on governing of reaction turbines with neat sketches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 | 1 | 1 | 1.5.1 |
| 5(a) | Write short note on (i) Selection of Turbines (ii) Detailed classification of Turbines and Pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | 4 | 3 | 2.6.4 |
| 5(b) | Manometric head discharge characteristics of a centrifugal<br>pump is given by the equation:<br>$Hm=20+15Q-600Q^2$<br>Where Hm is in m and Q is in m <sup>3</sup> /s. System curve for a typical<br>installation is estimated as 10+900Q <sup>2</sup> (Q is in m <sup>3</sup> /s), where 10<br>is static head in m.<br>If the NPSHR characteristics of the pump is given by<br>equation:<br>NPSHR=20Q+60Q <sup>2</sup><br>where Q is in m <sup>3</sup> /s, evaluate how high the pump can be safely<br>installed above the sump if suction pipe diameter is 15 cm,<br>pipe length on suction side is 1.5 times static suction lift and<br>'f' for the pipe is 0.016. Evaluate the cavitation parameter '\sigma'<br>if pump runs at 1440 rpm and operates at duty point. Calculate<br>the specific speed and suction specific speed. Take<br>atmospheric and vapour pressure being 10.3 and 2.5 mWc | 10 | 4 | 5 | 2.6.4 |
| 6(a) | The three jet Pelton turbine is required to generate 10000 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | 3 | 4 | 3.7.1 |



## Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

### June 2019 Re--Examinations

|      | under a net head of 400 m. The blade angle at outlet is $15^{\circ}$ and<br>the reduction in the relative velocity while passing over the<br>blade is 5%. If the overall efficiency of the wheel is 80%,<br>Cv=0.98 and speed ratio=0.46, then find: (i) the diameter of<br>the jet (ii) total flow in m <sup>3</sup> /s and (iii) the force exerted by a jet<br>on the buckets. If the jet ratio is not to be less than 10, find the<br>speed of the wheel for a frequency of 50 Hz and the<br>corresponding wheel diameter.                                                                                                                                                                                                                                                                                                                                                    |    |   |   |       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
| 6(b) | A hydraulic turbine is to develop 1015 KW when running at<br>120 rpm under a net head of 12 m. Work out the maximum<br>flow rate and specific speed for the turbine if the overall<br>efficiency at the best operating point is 92%. In order to<br>predict its performance, a 1:10 scale model is tested under a<br>head of 7.2 m. What would be the speed, power output and<br>water consumption of the model if it runs under the conditions                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 | 3 | 3 | 2.7.2 |
| 7(a) | similar to the prototype?<br>An inward flow reaction turbine has external and internal<br>diameters as 1.08 m and 0.54 m. The turbine is running at 200<br>rpm. The width of the turbine at inlet is 240 mm and velocity<br>of flow through the runner is constant and is equal to 2.16<br>m/s. The guide blade makes an angle of $10^{0}$ to the tangent of<br>the wheel at inlet and discharge at the outlet of the turbine is<br>radial. Draw rough nature of inlet and outlet velocity triangles<br>and determine (i) The absolute velocity of water at inlet (ii)<br>The velocity of whirl at inlet (iii) The relative velocity at inlet<br>(iv) The runner blade angles (v) width of runner at outlet (vi)<br>weight of water flowing through the runner per second (vii)<br>Head at inlet of the turbine (viii) Runner power (ix) Hydraulic<br>efficiency of the turbine. | 10 | 2 | 4 | 3.7.  |
| 7(b) | A three-stage centrifugal pump has impeller 400 mm in diameter and 20 mm wide. The vane angle at outlet is $45^{\circ}$ and the area occupied by the vane thickness may be assumed 8% of the total area. If the pump delivers 3.6 m <sup>3</sup> /min of water when running at 920 rpm, determine (i) Power of the pump (ii) Manometric head and (iii) specific speed. Assume mechanical efficiency as 88% and manometric efficiency as 77%.                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 3 | 3 | 2.7   |

#### BharatiyaVidyaBhavan's



# SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

#### ODD SEMJUNE 2019RE-EXAMINATIONS

Program: B. Tech (Mechanical)Duration: 3 HoursCourse Code: PCC-BTM504Maximum Points: 100Course Name: Thermal SystemsSemester: V

- 1. Notes: Question number 1 is compulsory; answer any Four questions out of remaining Six questions.
- 2. Use of steam table is permitted.
- 3. Assume suitable data and justify the same.

| Q.No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Points | со | BL | PI    |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|----|-------|
| 1(a)  | Discuss in detail multi-staging of reciprocating air compressor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | 1  | 1  | 2.3.1 |
| 1(b)  | Differentiate between high and low pressure boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5      | 1  | 1  | 2.3.1 |
| 1(c)  | Differentiate between impulse and reaction turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5      | 3  | 1  | 2.3.1 |
| 1(d)  | Enlist various applications of gas turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5      | 3  | 1  | 2.3.1 |
| 2(a)  | Prove that the condition for minimum work per kg of air delivered by two stage compressor when inter-cooling is perfect is given by: $P_2 = \sqrt{P_1 P_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8      | 1  | 2  | 2.3.2 |
| 2(b)  | A two stage double acting air compressor operating at 250 rpm takes air in at 1.013 bar and $27^{\circ}$ C. The diameter and stroke of L.P cylinder are 37 cm and 40 cm respectively. The stroke of H.P cylinder is same as L.P. cylinder and clearance of both the cylinder is 5% of the stroke. The L.P. cylinder discharges air at a pressure of 4.052 bar. The air passes through the intercooler so that it enters the H.P. cylinder at $27^{\circ}$ C and 3.85 bar. Finally, the air is discharged from the compressor at 15.4 bar. The compression and re-expansion in both the cylinder | 12     | 2  | 4  | 2.4.1 |



#### BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058



# ODD SEMJUNE 2019RE-EXAMINATIONS

|      | follows the same law $pv^{1.3}$ =Constant. Determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |   |   |       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
| 3(a) | <ul> <li>(i) Brake power required to run the compressor is mechanical efficiency is 85 %</li> <li>(ii) The diameter of H.P. cylinder</li> <li>(iii) Heat rejected in intercooler.</li> <li>Take C<sub>p</sub> = 1 kJ/kg-K and R = 287 J/kg-K for air.</li> <li>Derive equation for critical pressure ratio of a nozzle and prove that for maximum discharge pressure ratio is given by:</li> </ul>                                                                                                                        |    | 1 | 2 | 2.3.1 |
|      | $\frac{P_2}{P_1} = \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |   |   |       |
| 3(b) | A steam turbine develops 160 kW with a consumption of 19.4 kg/kWh. The pressure and temperature of the steam entering the nozzle are 12 bar and 220°C. The steam leaves the nozzles at 1.2 bar. If the diameter of the nozzle at throat is 7 mm, find the number of nozzles required. If 8 % of the total enthalpy drop is used up in frictional reheating in the diverging part of the nozzle, determine the diameter at the exit of nozzle and quality of steam leaving the nozzle.                                     | 12 | 4 | 4 | 2.4.1 |
| 4(a) | Prove that condition for maximum blade efficiency of a reaction turbine is given by relation:<br>$\eta_b = \frac{2\cos^2\alpha}{1+\cos^2\alpha}$                                                                                                                                                                                                                                                                                                                                                                          | 08 | 3 | 2 | 2.3.1 |
|      | Saturated steam at 10 bar is supplied to a single stage steam turbine through a convergent-divergent steam nozzle. The nozzle angle is 20° and the mean blade speed is 440 m/sec. The steam pressure leaving the nozzle is 1 bar. Find (i) the best angle if the blades are equiangular and (ii) the maximum power developed by the turbine if the numbers of nozzles used are 6 and area at the throat of each nozzle is $0.5 \text{ cm}^2$ . Assume a nozzle efficiency of 90 % and blade friction coefficient of 0.85. | 12 | 4 | 4 | 2.4.1 |



BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ODD SEMJUNE 2019RE-EXAMINATIONS

| 5(a) | Explain with neat sketch working of root blower and vane-type blower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  | 1 | 1 | 2.3.1 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-------|
| 5(b) | Explain why boiler accessories are used in the boiler and explain in detail function of economiser and air preheater with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 | 3 | 1 | 2.3.1 |
| б(а) | Explain evaporative condenser with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 3 | 1 | 2.3.1 |
| 6(b) | Explain advantages and limitations of rotary verses<br>reciprocating compressors and axial verses centrifugal<br>compressors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | 3 | 1 | 2.3.  |
| 7(a) | What are the methods of improving efficiency of open cycle gas turbine? Explain open cycle gas turbine with reheating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  | 3 | 1 | 2.3.  |
| 7(b) | In a gas turbine power plant the compressed air goes to<br>combustion chamber through regenerator. This air is then<br>expanded over the turbine and passed through<br>regenerator. The following data is given:<br>Isentropic efficiency of compressor = 0.83, Isentropic<br>efficiency of turbine = 0.85, Mechanical transmission<br>efficiency = 0.99, Combustion efficiency = 0.98, Heat<br>Exchanger effectiveness =0.80, Pressure ratio = 4.0,<br>Maximum cycle temperature = 11000 K, Ambient<br>conditions = 1 bar and 288 K. Calorific value of fuel = 42<br>000 kJ/kg. Calculate specific work output, specific fuel<br>consumption and cycle efficiency. Neglect mass of fuel<br>while calculating heat taken by gases. Take $C_p = 1.005$<br>kJ/ kg-K, $\gamma = 1.4$ during compression and $C_p = 1.147$<br>kJ/kg-K, $\gamma = 1.33$ during combustion and expansion. | 14 | 4 | 4 | 2.4.  |